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Overview

Quoting from [1] D. G. Altman and J. M. Bland. Absence of evidence is not
evidence of absence. BM]J, 311:485, 1995:

By convention, a P value greater than 5% (P>0.05) is called “not significant”. Randomized controlled
clinical trials that do not show a significant difference between the treatments being compared are often
called “negative”. This term wrongly implies that the study has show that there is no difference, whereas
usually all that has been shown is an absence of evidence of a difference. These are quite different

statements.



Overview

Although the quote in the previous slide addresses randomized controlled
trials specifically, the same can be said for trials analyzed using ARM.

ARM provides mean separation letters, with the following caption
Means followed by the same letter or symbol do not significantly differ

usually followed by a note of the critical P value and mean comparison test.
ARM turther allows a special symbol to be displayed when no significant
difference between treatment means is detected.



Null Hypothesis Significance Tests

+ When we talk about significance in this context, we are usually talking about a the
statistical significance of the null hypothesis.

+ Remember, the null hypothesis postulates that treatment means are equal, i.e.
* Hotlly = W

+ When we fail to reject the null hypothesis, we frequently state the means are not
significantly different.

+ But we’ll not have proven the null hypothesis to be true. It’s asserted to be true, then we
test how well the data conforms to the null hypothesis.



NHST

When we start an experiment, we generally don’t believe the null
hypothesis to be true - it it were, we wouldn’t be doing the experiment. In
general, we design experiments to determine if treatments are different.

But suppose we want to design an experiment to show that two treatments
are equivalent.

We might, for example, have a new formulation of a standard agronomic

treatment. We'll reter to the mean of the new formulation to be u,,,,,, and
the older standard treatment to be U¢tq4



Two one-sided tests (TOST)

+ Now, it would be difficult to prove that two means are exactly equal, considering that
we usually work with mean estimates that represent continuous random variables.

+ Instead, we define an equivalent limit or bound (A), such that the difference between

means is less than the limit (|t,,oy — Usea| < A). This leads us to two one-tailed
hypothesis (following Shuirmann, 1987)

+ HylUnew — Ustd = 4y
+ Hyi Unew — Usta = By

+ D.]J. Schuirmann. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average
bioavailability. Journal of Pharmacokinetics and Biopharmaceutics, 15(6), 1987.



TOST

If we reject both hypothesis,
Hi: Pnew — Usta = Ap
Hy: Unew — Usta = Ay

then we can assert that A; < lyow — Ustg < Ay; or that the two treatment
means are equivalent.



TOST t-tests

+ The dual hypothesis can be rewritten as
+ Hy: (Upew — Usta) — AL <0
+ Hy: (Upew — Usta) — Dy = 0

<+ which leads to the t statistics

S tl = (Ynew_ystd)_AL and tz L (Ynew_ystd)_AU
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+ where X Hoyy and X std are the estimated means of the new and standard treatments, respectively,
while n; and n, are the number of observations for new and standard treatments.




TOST t-tests

In some examples in the literature, the t statistics are written as

Xnow—Xerd )—A Ay—(Xpow—X
:(newlstc:ll) Landt2= U(nlewlstd)

S -+ S +
Y1 N2 \ 1 N2

1

This usually results in a change of sign of t,, and a change of the “tail” of the calculation

of probabilities of the associated t values. We use the previous convention to be
consistent with the R library TOSTER to provide an alternative check on our calculations.

[1] A. R. Caldwell. Exploring equivalence testing with the updated toster r package. PsyArXiv, November 2022.



TOST t-tests

S 1s a pooled standard deviation. In the literature, this is commonly given as

(n1—Dsdgew+(z—Dsdgy
\ nq+n,—2

S =

where sd2,,, and sdZ, are the squared standard deviations for the new and standard
treatments, respectively.

However, when computing equivalence tests in ARM for designed experiments, we use
the pooled standard deviation from the AOV table; this is the square root of the residual
mean square. That is,

s =VRMS



Confidence Interval Method

+ The two one sided tests imply an equivalent confidence interval test.

+ Using the Confidence interval method, we define a (1-2a) confidence
interval; if this interval is contained within the confidence bounds we reject
the TOST hypothesis and declare that equivalence is established.

+ This corresponds to a 90% CI when each TOST test is at the traditional 95%
significance.

+  H.van der Voet, J. N. Perry, B. Amzal, and C. Paoletti. A statistical assessment of differences and equivalences between genetically modified and reference plant
varieties. BMC Biotechnology, 11(1):15, Feb. 2011.



Selecting A

Choosing an appropriate A is not a statistical problem.

Instead, the choice of A is chosen to be the smallest effect size of interest
(SESOI). This will usually be chosen based on what researchers consider to
be an inconsequential difference.

Note that we do not use the term “equal” to describe two means, we use the
less precise term “equivalent”, which implies a degree of uncertainty in the
comparison.



Specifying A

In ARM, we allow three options for specitying A.

The most generally useful, for most cases, will be the “Percent of standard”
basis. Suppose we enter 5 (for 5% of standard) in the ARM Limit field, and

further suppose that the mean for the standard treatment ()_( stq) 18 50. Then
Ay = —Xoq X (5/100) = —2.5
A= XX (5/100) =25



Specifying A

+ We also allow Cohen’s d to be used to specify the equivalence limit.

+ Cohen’s d is a measure of effect size, or the proportion to an effect to standard deviation, such that

* d= ()_(new = )_(std)/s
+ where S is a pooled standard deviation.

+ Cohen (whose work was in social sciences) gave a guidelines for etfect sizes of small =0.10, medium =
0.3 and large = 0.5

+ When using Cohen’s d as a equivalence limit basis, we compute

e A=d XS



Specifying A

Finally, in ARM we allow an absolute value to be entered as the confidence limit. When
the absolute value basis is selected and 5 entered in the Equivalence limit field. then

A; = —5andA,; =5

This may be easier for researchers to work with. For example, suppose a new
formulation is $15 per acre cheaper when applied to soybeans. Suppose soybeans market
at $8 per bushel.

Then at absolute value of 2 bushels per acre, the new formulation will be equivalent to
the standard formulation even if mean yield associated with the new formulation is no

less than 2 bushel per acre lower than the standard formula (A, = —2)



Published Examples

+ In most cases, the literature on equivalence testing is based on two independent sample t-tests.

+ These examples typically use pooled standard deviations, and may use different versions of the one-sided t statistic. Where
possible, we enter the data in ARM as 2 treatment CRD trials, and use the pooled standard deviation from the AOV table.
Some cases are paired observations and use a paired t-test. We enter these as RCB designs, where pair is the blocking variable.

+ In some cases, the SESOI is on a absolute scale. This is a reasonable approach if only one assessment is to be tested for
equivalence.

+ When multiple assessments are to be tested for equivalence, there are two caveats that must be consider:
+ Absolute value SESOI may be invalid for some assessment columns

+ We have no suitable method for the multiple comparison problem across assessments, so we can’t control Type I error rates
for multiple equivalence tests. That is, two treatments may appear to be equivalent for a large number of assessments, but
some of those equivalences may be spurious.



Possible Outcomes

A  Statistically Equivalent and Not Different
B Not Equivalent and Statistically Different
C  Statistically Equivalent and Statistically Different
+ There are different ways of stating the possible outcome of the . .
null hypothesis test (NHST) for difference between means, and D Not Equivalent and Not Difrerent
the TOST for equivalence of two means.
+ We will borrow from Lakens, who uses confidence intervals to | , ,
illustrate the outcomes. A : ——
. . —— |
+ Four possible outcomes are presented. Diamonds represent e : : :
difference between two means, while bars represent 95% C : | e |
confidence intervals; horizontal bands on the bars represent | E E
90% C.I. D e e ;
+ Note that it is possible for two treatments to be statistically 10 05 0 05

significant and statistically equivalent.(Case C). This may .
happen if the equivalence limit is large, and the 90% CI of the Mean Ditterence
mean difference is small

+ Adapted from D. Lakens. Equivalence tests: A practical primer for t tests, correlations, and meta-analyses.
Social Psychological and Personality Science, 8(4):355-362, May 2017.



Lakens 2018

+ Lakens provides several examples of cases when both
NHST and TOST may be either significant or non-
significant. However, they only supply data for Example
1.

+ This is an example of outcome 1 - not statistically
different and not equivalent.

+ We enter the data as a CRD experiment in ARM.

+ Lakens was the original author of the TOSTER library,
but additional modifications where made by Caldwell

+ [1] D. Lakens, A. M. Scheel, and P. M. Isager. Equivalence testing for psychological research:

A tutorial. Advances in Methods and Practices in Psychological Science, 1(2):259-269, June
2018.

+ [2] A. R. Caldwell. Exploring equivalence testing with the updated toster r package.
PsyArXiv, November 2022.
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+.00625. The TOST procedure consists of two one-sided
tests, and yields a nonsignificant result for the test
against A, #97.77) = 0.71, p = .241, and a significant
result for the test against A, #(97.77) = -2.86, p = .003.
Although the ? test against A,, indicates that one can

reject differences at least as large as .0625, the test
against A, shows that one cannot reject effects at least
as extreme as —.0625. The equivalence test is therefore
nonsignificant, which means one cannot reject the
hypothesis that the true effect is at least as extreme as
6.25 percentage points (Fig. 2a). The result would be
reported as #97.77) = 0.71, p = .241, because typically
only the one-sided test yielding the higher p value is
reported in the Results section.?



Flanned Comparnisons Eguivalence Tests

Method Limit Basis Limit | Standard | Atemative Description
a e n S 1 | Two one-sided tests (TOST) | Absolute value | 0.0625 | 2 1 1 equivalent to 2

2 “w

TOSTER output

tsum TOST(ml=0.4585113,

+ Lakens, et. al, argue that an absolute ditfference
between the scores of 6.25% is not meaningful. s o

nl=53,
n2=48,
egb=0.0625,
. . mrhe = 0 05, var-equalemiuE) AR |\ /I Output
+ In ARM, we enter this as using the Absolute
##
. 2 > 4 ## Two Sample t-tes i
value as the Limit Basis, and enter 0.0625 in the gy e e e e
## The equivalence test was non-significant, t(99) = 0.706, p = 2.41le-01 M ean Difference -0.037756208
® O ® ¢ ## The null hypothesis test was non-significant, t(99) = -1.077, p = 2.84e-01 NHSTt . ‘1-DTT1EEEEZ
Lll I Ilt fleld. ThlS exal I IpleS used the TOST ## NHST: don't reject null significance hypothesis that the effect is equal to zero ?gg:rrlifl?\{ﬂr}t E?E’ggg}gaa
:z TOST: don't reject null equivalence hypothesis TDE—TI:LIJ".'EF]: Pit) 0 24005451 0
# T05T Resules TOST(Upper) PC) 0.002582591
method, so we enter that as well. We also enter o Ui
54 ## t-test -1.0772 99  0.284 MHST P ower 0.187093520
treatment 1 as the alternative, and 2 as the e 1 o

#i#
## Effect Sizes

standard. Remember, we compute mean ## e o -

## Raw -0.03776 0.03505 [-0.096, 0.0204]
## Hedges's g -0.21300 0.19984 [-0.5387, 0.1137] 0.9
## Note: SMD confidence intervals are an approximation. See vignette("SMD calcs").

difference as X, .,y — Xctd-

+ For comparison, we enter the means and

standard deviations for these data in R and
invoke the tsum_TOST TOSTER library function.



Lakens 2018

The equivalence test was non-significant, t(99) = 0.706, p = 2.41e-01
The null hypothesis test was non-significant, t(99) = -1.077, p = 2.84e-01

NHST: don't reject null significance hypothesis that the effect is equal to zero
TOST: don't reject null equivalence hypothesis

TOST Results the omnibus test of equivalence.
t df p.value
t-test -1.9772 99 0.284 - .
TOST Lower ©.7058 99  ©0.241 >T with the largest p-value as result

TOST Upper -2.8602 99 0.003

S A A LN\ \/\]-VI._I. V OV AANC A LW W Wbl e A S A AdA N VA VUUNUU A LALY VVY AGALAL LA LN, ALLALLN o

+ We require-beth-tests to be significant to reject the pair of null hypothesis and establish
equivalenee.



Lakens 2018

+ In ARM, we use the language “Inconclusive” when we reject only one of the two null hypothesis.

+ In this case, we reject the Upper TOST. Remember, this takes the form

+ Hy: (l/‘new = /f‘std) — Ay = 0 or Hy: (.unew = ﬂstd) > Ay

+ When we reject this hypothesis, we tend to accept the alternative, that H,,: (Upew — Ustq) < Ay, or that the
difference between the two means is smaller than our upper bound of equivalence.

+ This may lead us to conclude that the new treatment is not superior to the standard, within the confidence limits.

+ Note that we are not testing the hypothesis Hy: (Upew — Ustq) = 0, which is a one-tail version of the standard
NHST, which is usually two-tailed. Thus, equivalence testing is not quite the same as testing a one-tailed null
hypothesis of the traditional form - the equivalence limit plays a role in inference.



Lakens 2018

+ The TOSTER library does not perform power
calculations for the achieved power of the
NHST, but we include this calculation in

ARM.

<+ This tells use if we have sufficient statistical
power to detect a mean different of the same

magnitude as the calculated mean ditference.

+ We can compare with value with the Post
hoc: Compute achieved power ... option
from the G*Power software.

ARM output
Equralence Tests
1 eguivalentto 2
I ean Difference -0.037756205
MHSTt -1.07 7125867
NHST Pt} 0264041755
TOST(Lowver)t 0.705857635
TOST(Lower) Pit) 0.240954310
TOST(Upper)t -2.8660149372
TOST(Upper) Pit) 0.0025825591
Incondusive
MHST P ower 0.167093620

G*Power output

Type of power analysis

Post hoc: Compute achieved power - given a, sample size, and effect size

Input parameters Output paramete

1.0775188
1.9842170

99

Power (1-B err prob) 0.1871962




Lakens 2018

+ As in this case, most ARM trials will have too few reps to have a meaningful achieved power
when treatment ditferences are not significant. It is important to consider that in many cases
true but small differences cannot be detected.

+ Part of the art of selecting equivalence limits is deciding upon the value of a true difference
that 1s functionally meaningless. We should try to select an equivalence limit to represent a
difference that even if statistically significant, it would be practically insignificant.



lolango 2017

+ lalongo (2017) provides an overview of the logic ot
equivalence testing, building on the logic of traditional null
hypothesis testing.

+ In Appendix A, Ialongo provided numbers for a paired data
example. There is no experimental information associated
with the values; these values are presented as examples for
calculations only.

+ lalongo uses a different version of the t statistic for the
upper TOST test; reversing the order of the subtractions in
the numerator. This changes the sign of the t statistic, but
does not change the magnitude. This does require the use of
the opposite tail of the t distribution to calculate p values.

+ C. Ialongo. The logic of equivalence testing and its use in laboratory medicine.
Biochemia Medica, 27(1):5-13, 2017.

d-A

Sp X\JNJ

TOST - Pinferioriry -

TOST - Psuperiorit)r =

B-d

Sp XV N~

« hypothesis of inferiority: T = (1.1- (- 3.12)) / (9.57 /

20)%> =6.10

« hypothesis of suoeriority: T=(3.12-1.1) / (9.57 /

20)%> = 2.92,

Egunalence Tests

Z2equivalentto 1
Il ean Difference
MHSTt
MHST P (i)
TOST(Lowert
TOST(Lower) P(t)
TOST(Upper)t
TOST(Upper) P(t)

NHST P ower

1.10
1.59
0.13

8.10
=0.01

-2 52
=0.01

E gunralence establizhed
0.33




lolango 2017

+ We reject both the hypothesis of inferiority
(TOST Lower) and the hypothesis of
superiority (TOST Upper), thus we can
conclude that the two treatments are
equivalent within a margin of 5% of
standard.

+ Note that Ialongo uses the terminology
such that TOST(Lower) = Hypothesis of
inferiority and TOST(Upper) = Hypothesis
of superiority.

Egurdalence Tests
2 equivalentto 1
I ean Difference 1.10
MHSTt 1.99
MHST Pt} 0.13
TOST(Lower)t g.10
TOST(Lower) P(t) <0.01
TOST(Upper)t =592
TOST(Upper) P(t) =0.01
E gquivalence established
MHST P ower 0.33

The critical value of T corresponding to a t distri-
bution with N - 1 = 19 degrees of freedom at a =
0.05is 1.73. Thus we can write:

« hypothesis of inferiority: T observed > t critical
- reject = conclude non-inferiority

« hypothesisof superiority: T observed > t critical
- reject = conclude non-superiority.

Thus, as data support both non-inferiority and
non-superiority, we can conclude the two proce-
dures being equivalent within a margin of + 5%.



Interval of equivalence

lolango 2017

<

+ lalongo also provides a graph showing the 4 -3 =2 -1 0 1 2 3 4
: : : s e Diff b ired data (d
confidence interval method. We duplicate this in fHerence:Dstwean palradiatald)

ARM by SeleCting C()nﬁdence Interval as the FIGURE 2. The confidence interval approach (Westlake’s meth-

: od) for TOST-P. The diamond represents the average difference

equwalence method. (d = 1.1), while the whiskers are the 90% Cl (0.18; 2.20); the grey

shaded area is the interval of equivalence with the dashed lines
marking its boundaries (-3.12; 3.12).

+ Since the 90% CI of treatment difference (0.18,2.02)

. . . . . Method Limit Basis Standard | Atemative | Limit Descrigtion
1S Contalned 1n the Equlvalence 1nterva1 (-3.12, 1 | Corfidence Interval | Percent of standard | 1 2 5 2 equivalent to
o 2 "
3.12) we conclude the treatments are equivalent. T e sedese [0:
Mon-nferonty
+ We should note that ARM output disagrees with Equivalence Tests
’ i Zequivalentto 1

JIolango. Iolongo’s CI corresponds to critical t W ean Difference 1.10

; : Standard Equiv. Int £3.12,3.12)
values at (1-2a), which produces a 80% two-tailed Attemative C £0.10.2.30}

; E quival stablished

CI. ARM uses (1-a), which produces a 90% two- WHET B ower e =3

—

tailed CI.



Caldwell 2022

+ Caldwell contributed to the R TOSTER library, and in
Caldwell 2022 provided examples of the use in this
library.

+ One data set was from a paired sample sleep study.
To duplicate this in ARM, we use an RCB design,
with pair as the blocking variable.

+ Caldwell specifies an absolute value of 0.5 as the
equivalence bound.

<« To match TOST Lower and TOST Lower, we need to
specity treatment 2 as the standard.

+ A. R. Caldwell. Exploring equivalence testing with the updated
TOSTER R package. PsyArXiv, November 2022.

Flanned Comparnisons Eguivalence Tests

1 | Two one-sided tests (TOST) | Absolute value |05 | 2 1
Er

Method Limit Basis Limit | Standard | Altemative

Description

1 equivalent to 2

To perform TOST on paired samples, the process does not change much. We could
process the test the same way by providing a formula. All we would need to then is
change paired to TRUE.

res2 = t_TOST(formul extra ~ group,
sleep,
TRUE,
.5)
res2
#Hif
## Paired t-test
#i

## The equivalence test was non-significant, t(9) = -2.777, p = 9.89e-01

## The null hypothesis test was significant, t(9) = -4.062, p = 2.83e-03

## NHST: reject null significance hypothesis that the effect is equal to zero
## TOST: don’t reject null equivalence hypothesis

##

## TOST Results

it t df p.value
## t-test -4.062 9 0.003

## TOST Lower -2.777 9 0.989
## TOST Upper -5.348 9 < 0.001
#H

Egunalencesiests
1 equivalendio 2
M ean Differenes
MHSTt
MH=T Pii)
TOST(Lower) t
TOST(Lowver) P(1)
TOST(Upper)t
TOST(Upper) P(t)

NHST Poweer

-1.580

-4 062
0.003

2 Tfr
0.935
-5.348
=0.001
Incondusive
0.950




C |d ( ! | I : O 2 2 Flanned Compansons Eguivalence Tests
a W Method Limit Basis | Limit | Standard | Atemative Description

1 | Two one-sided tests (TOST) | Absolute value |05 | 2 1 1 equivalent to 2
2
Equivalence Tests
1 egquivalentto 2
I ean Difference -1.580
+ We should note that the equivalence test is ST P oo
inconclusive (TOST Lower is not significant), oAt (Loven Py ey
: TOSTilUpper)t 5.348
and that the NHST Power is 0.950 TOST(U pper) P(t) <0.001
Incondusive
NHST P ower 0.950

+ As we might expect from the NHST Power, we
do indeed find a statistically significant

Flanned Comparisons Eguivalence Tests

difference between the two means.

Method Limit Basis Limait | Standard | Atemative Description
1 | Two one-sided tests (TOST) | Absolute valle | 25 ()2 1 1 equivalent to 2|
: o
+ We can produce the scenario where two
: A : o ime Equialence Tests
treatments are both statistically significant and 1 equivalent o 2

et R e th NHSTE 4062
statistically equivalent if we increase the SR 4062
: o . ey TOSTIL y i 2.365
equivalence limit from 0.5 to 2.5. This illustrates %E%EE L o
the importance of a careful choice of oAU bty 2y
. E quivalence established
equlvalence bounds. NHST P ower G=531]




Richter 2002

Richter provides artificial data for a two sample independent
means t-test. In ARM, we enter this as a CRD experiment.

Richter also provides instructions for entering the test data in
an Excel spreadsheet. Importantly, the variables are reversed
for step 2. This leads to a different sign for the t-test in step 2.

In ARM, we don’t reverse variables, so the signs of the two t-
tests may be ditferent. In either case, we compute
comparable p-values for the t statistics.

Since both TOST p-values are significant, we declare the two
treatment groups equivalent within the 0.8 absolute value
limit.

S. J. Richter and C. Richter. A method for determining equivalence in industrial applications. Quality
Engineering, 14(3):375-380, 2002.

t-Test: Two-Sample Assuming Equal Variances. Step 1

t-Test: Two-Sample Assuming Equal Variances. Step 2

Variable 1 Variable 2 Variable 1 Variable 2
Mean 8.9 8.75 Mean 8.75 8.9
Vanance 0.544444 0.568182 Vanance 0.568182 0.544444
Observations 10 12 Observations 12 10
Pooled variance 0.5575 Pooled variance 0.5575
Hypothesized mean difference 0.8 Hypothesized mean difference 0.8
df 20 df 20
¢ Stat — ST t Stat AR T
P(T+1) one-tail 0.027762 P(T+—1) one-tail 0.003772
Flanned Compansons Eguivalence Tests |
Method Limit Basis Limit | Standard | Altemative Description
1 | Two one-sided tests (TOST) | Absolute value (0.3 | 1 2 2 equivalent to 1
Er
Equialence Tests
2equivalentto 1

M ean Difference £0.150

MHSTH 0.4659

NHST P ) 0.544

TOST(Lower) t 2023

TOST(Lower) P(t) 0.028

TOST(Upper)t 2075

TOST(U pper) Pit) 0.004

E guinalence eSabsliehed
MHST Power 0.073




A more detailed example

+ The previous examples from the literature focus on randomized control
trials, which frequently have only two groups - treated and untreated, or
treated with a standard treatment and treated with a new or alternative
treatment.

+ These examples also only focused on a single outcome.

+ ARM trials are more commonly executed as blocked designs with multiple
treatments, and usually involve multiple outcomes or assessments. We now
consider



Shoe Trial

<+ I conducted a shoe trial where I ran in
different models of running shoes, and I
recorded as the assessments of interest
running speed, step length and stride rate.

< Use the Fisher LSD test, I find that there
are significant differences among running
shoes - most notably, I ran faster (7.92
mph) in the racing flat Lunaracer2 than in
the heavier training shoe Ghost (7.64 mph).

Character Rated Sspeed| Step Leng Step Rate
Hating Type SPEED| LENGTH HATE
Rating Unit MPH FT FER SEC
ARK Action Codes T1 HD TZ D T3 1D
Number of Decmals 2 2 2
Trt Treatment a* [ or
M. Name
1 Lunarsyvaft f.02 ab 4 02 - 171.23 -
Cushioned Trainer
M ke _ _ _
2 Ghost fodc 3.594 - 171.22 -
Cushioned Trainer
Brmooks
3 Green Silence f.00a 416 - 167.16 -
Hacing Flat
Brooks
4 Lunarf by f.03ab 304 - 174.83 -
Light Trainer
M ike _ _ _
5 Launch 768 bc 3.92 - 172.45 -
Light Trainer
Brmooks
6 Lunaracerd .92 38 221 - 168.32 -
Hacing Flat
M ike




Shoe Trial

2+ However, another model of shoe, Green
Silence, is also a racing flat. Green Silence
has the same mean separation letter (“a”) as
Lunarracer2. That tells me the shoes are not
statistically different.

+ But are they equal - that is, does it matter if I
want to run a fast race which pair of shoes I
wear?

+ | can’t statistically test that the shoes are
equal, as we’ve discussed. But I can test if
the shoes are equivalent.

Character Rated Sspeed| Step Leng Step Rate
Hating Type SPEED| LENGTH HATE
Rating Unit MPH FT FER SEC
ARK Action Codes T1 HD TZ D T3 1D
Number of Decmals 2 2 2
Trt Treatment a* [ or
M. Name
1 Lunarsyvaft f.02 ab 4 02 - 171.23 -
Cushioned Trainer
M ke _ _ _
2 Ghost fodc 3.594 - 171.22 -
Cushioned Trainer
Brmooks
3 Green Silence f.00a 416 - 167.16 -
Hacing Flat
Brooks
4 Lunarf by f.03ab 304 - 174.83 -
Light Trainer
M ike _ _ _
5 Launch 768 bc 3.92 - 172.45 -
Light Trainer
Brmooks
6 Lunaracerd .92 38 221 - 168.32 -
Hacing Flat
M ike




Shoe Trial

Suppose I run in the Lunarracer a 5K in 20 minutes. A 1% difference in running speed is 12 seconds. A
5% ditterence in performance is 60 seconds - a full minute slower. I'm willing to accept two models of
running shoe as equivalent if the difference between the two models is 1%; 12 seconds is acceptable. A
5% ditterence is too great to consider two models equivalent for racing purposes.

So, I've determined that the smallest etfect size of interest (SESOI), for the purpose of running speeds, to
be 1% of the standard.

Now I can ask the question -Are the two lightweight models of shoe, Lunarracer2 and Green Silence
equivalent for my purposes?

From the means table, I also note that a lightweight trainer, Lunarfly, has the same mean separation
letter (“a”) as Lunaracer2. The Lunarfly might be generally more comfortable and supportive, so I
interested in determining if Lunaracer2 and Lunartly are equivalent.



Shoe Trial

+ Since Lunaracer?2 (treatment 6) is common
to both equivalence tests, we'll specity that
model as the standard, and Lunartly
(treatment 4) and Green Silence (treatment
3) as alternatives.

+ The equivalence method is two one-sided
tests, while the equivalence basis is 1% of
standard (Lunaracer2 mean)

Flanned Compansons Eguivalence Tests

1 | Two one-sided tests (TOST) | Percent of standard | 1
2 | Two one-sided tests (TOST) | Percent of standard | 1

3 || o

b
b

Method Limit Basis Limit | Standard | Altemative

4
3

Description
Lunarfly equivalent

Green Silence equi




Shoe Trial

+ We'll focus on the Equivalence Tests for
running speed only.

+ We see that we cannot declare that Green
Silence is equivalent to Lunaracer2, but the
results for Lunartly is inconclusive.

+ This seems counter intuitive. The absolute
value of mean difference for Lunarfly is
larger than the difference for Green
Silence.

Equrdalence Tests
Lunarfly equivalent to Lunaracerz

Il ean Difference
MHST t

MHST P )

TOST(
TOST(
TOST(
TOST(

_ower) t
_owver) P(1)
Jpperjt

U pper) Pt}

MHST Power

Green Silence eguivalentto Lunaracer?
il ean Difference

MHSTT

MHST P i)

TOST(
TOST(
TOST(
TOST(

_ower) t
_owver) P(1)
U pper)t

U pper) Pt}

NHST Power

-0.0&7
-1.045

0.308
-0.052
0.236
-2.001

0.030
Inconclusive

0.169

-0.042
-0.506
0.6159
0.2445
0.3259
-1.451
.00
E qunalence not established
0.077




Shoe Trial

+ Perhaps the CI method is more revealing.

+ We see that for Lunartly, the upper bound of the
mean difference CI is contained within the
equivalence interval. It is not likely that Lunarfly is
superior to Lunaracer2, so is equivalent with
respect to the upper bound. But it may also be a
much slower shoe, so equivalence is inconclusive.

+ In contrast, given the limits of equivalence, Green
Silence may be a faster shoe, but may also be a
slower shoe - the equivalence interval is completely
contained in the mean different CI, so we fail to
reject both null hypothesis about equivalence.

Equralence Tests

Lunarfiy eguivalent to Lunaracers
i ean Difference

Standard Equiv. Int

Altemative Cl

MHST Power

Green Silence eguivalentto Lunaracer?Z
M ean Difference

Standard Equiv. Int

Altemative Cl

NHST Power

L.0&7

-0.079 0.079)
-0.230 0.056)
Incondusive
0.1659

0.042
(-0.079,0.079)

-0.185,0.101)
Eguivalence not established
0.077




Shoe Trial

Egunalence Tests
Lunarfiy eguivalent to LunaracerZ

Il ean Difference
MHST

MHST P it}

+ If we refer back to Iolango, we may use the
language that Lunartly fails the null (one-
sided) hypothesis of superiority, so we reject
the null hypothesis of superiority, so we

TOST(
TOST(
TOST(
TOST(

_ower) t
_ower) P(1)
U pper)t

U pper) P(t)

NHST P ower

might conclude that Lunarfly is not superior

to Luarracer?2.

Green Silence eguivalentto Lunaracer?
Il ean Difference

MHST

MH=T Pit)

+ Because we reject one and only one of the
TOST, ARM reports this as “Inconclusive”.
In contrast, we do not reject either null
TOST hypothesis tfor Green Silence, we
report the result that "Equivalence is not

established”.

TOST(
TOST(
TOST(
TOST(

_ower) t
_ower) P(1)
Jpper)t

U pper) P(t)

NHST Power

-0.0&7
-1.0445

0.308
-0.052
0.236
-Z.001

0.030
Inconclusive

0.169

-0.042
-0.506
0.6159
0.445
0.325
-1.461
0.020
E qunalence not established
0.077




Shoe Trial

Power and Efficiency

CV18 = Reps & = Power 80 = Signd5% -~ % Mean Dif(1.0 [

Lock at O B
CV Reps Fower asL % Mean Diff Emor OF | "Plot” ELs

5 348 12 2

+ We should note that the computed : 3.06 20 %

statistical power of the NHST for these E_ o —

equivalence tests are low (0.169 and 0.077). Ny 0 y y 229 7 100

| 99 ; 0.6 9506 | 9801

<« If we entered the achieved CV in the i? D{E’ ;Eﬁ E:E?

Power and Efficiency table for this trial, we % 1.2 1180 | 12%

see that we would need 51 replicates to - = S
detect a mean difference of 1%, while with

our given number of replicates (6) we

could detect using the NHST a ditference
of 3%.



Shoe Trial

+ Given that information, suppose we raise the
equivalence limit from 1% to 3%.

+ We then find equivalence between both pairs
of running shoes.

+ But is that good practice? Not really. We
should be careful to specity a meaningtul
SESOI before we perform equivalence tests.

+ Similarly, we should be caretul in planning
our experiments, so that we can detect
differences close to our equivalence limits.

Flanned Compansons Eguivalence Tests

Method Limit Basis Limit | Styndard | Altemative Description
1 | Confidence Interval | Percent of stardard | 3 G 4 Lunarfly equivalent to Lunar
2 | Confidence Interval | Percent of standard | 3 G 3 Green Silence equivalent to
7°
Equivalence Tests
Lunarfiy eguivalent to Lunaracer2
M ean Difference -0.0&7

Standard Equiv. Int
Altemative Cl

MHST P ower

Green Silence eguivalent to Lunaracer?
I ean Difference

Standard Equiv. Int

Altemative Cl

NHST P ower

(-0.236,0.2338)
(-0.230,0.056)
Equivalence established
0.169

-0.042
(0.238 0.238)

(-0.185,0.101}
Equivalence established

0.077F




A bit more about the Equivalence limit

+ Choosing the equivalent limit is not a statistical problem. Instead it
requires, quoting lalongo “demands the external support provided through
the so-called equivalence interval to gain a meaning.”

+ As we’ve seen, it is possible to find a equivalent interval that supports
equivalence for nearly any pair of means, if we first examine the data. For
equivalence tests to be meaningtul, they should be determined apriori.



A bit more about the Equivalence limit

+ We also need to consider that equivalence limits may be determined by,
again from lalongo, different applications or different domains. For
examples, the equivalence limit may be determine by assessment
measurement; measurements taken with well-calibrate instruments may
have narrower equivalence intervals than qualitative assessments.

+ Due to the nature of ARM reports, our current design is limited to applying
a single equivalence limit to the entire set of assessments included in reports.
Thus, careful use of equivalence limits may require equivalence tests being
reported only when a subset of assessments is chosen for a report.



A bit more about the Equivalence limit

+ One method that may allow equivalence limits to be applied across multiple assessments in a
single report is to use Cohen’s d to define the equivalence limit.

+ We not discussed the use of Cohen’s d in this presentation since there are few examples in the

literature that explicitly use d in defining equivalence limits. In this presentation, we’ve strived
to show how ARM reproduces equivalence tests as reported in the literature.

+ Cohen’s d standardizes an effect to make the effect relative to variance of the data; d is usually
given by d = (Xnew - Xstd)/S-

+ However, thinking about mean and mean differences in terms of Cohen’s d is not common in
agronomic research and may require some adjustments to thinking about experimental results in
agronomic sciences.



Conclusion

Equivalence tests provide us a method of determining if treatments are
effectively the same, when ditferences cannot be detected statistically using
the traditional null hypothesis testing.

However, we must take care that our experiments have sutticient power to
detect important differences, and we must take care in determining SESOI.

Determining SESOI is frequently not a statistical problem, but instead must
take into consideration factors of treatment application and experimental
outcome.
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