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Equivalence Tests in ARM



Overview

✤ Quoting from [1] D. G. Altman and J. M. Bland. Absence of evidence is not 
evidence of absence. BMJ, 311:485, 1995:

✤ By convention, a P value greater than 5% (P>0.05) is called “not significant”. Randomized controlled 

clinical trials that do not show a significant difference between the treatments being compared are often 

called “negative”. This term wrongly implies that the study has show that there is no difference, whereas 

usually all that has been shown is an absence of evidence of a difference. These are quite different 

statements.



Overview

✤ Although the quote in the previous slide addresses randomized controlled 
trials specifically, the same can be said for trials analyzed using ARM.

✤ ARM provides mean separation letters, with the following caption
✤ Means followed by the same letter or symbol do not significantly differ

✤ usually followed by a note of the critical P value and mean comparison test. 
ARM further allows a special symbol to be displayed when no significant 
difference between treatment means is detected.



Null Hypothesis Significance Tests

✤ When we talk about significance in this context, we are usually talking about a the 
statistical significance of the null hypothesis. 

✤ Remember, the null hypothesis postulates that treatment means are equal, i.e.

✤ 𝐻0: 𝜇𝑖 = 𝜇𝑗

✤ When we fail to reject the null hypothesis, we frequently state the means are not 
significantly different. 

✤ But we’ll not have proven the null hypothesis to be true. It’s asserted to be true, then we 
test how well the data conforms to the null hypothesis.



NHST

✤ When we start an experiment, we generally don’t believe the null 
hypothesis to be true - if it were, we wouldn’t be doing the experiment. In 
general, we design experiments to determine if treatments are different.

✤ But suppose we want to design an experiment to show that two treatments 
are equivalent. 

✤ We might, for example, have a new formulation of a standard agronomic 

treatment. We’ll refer to the mean of the new formulation to be 𝜇𝑛𝑒𝑤, and 

the older standard treatment to be 𝜇𝑠𝑡𝑑



Two one-sided tests (TOST)

✤ Now, it would be difficult to prove that two means are exactly equal, considering that 
we usually work with mean estimates that represent continuous random variables.

✤ Instead, we define an equivalent limit or bound (Δ), such that the difference between 

means is less than the limit (|𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑| < Δ). This leads us to two one-tailed 
hypothesis (following Shuirmann, 1987)

✤ 𝐻1: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 ≤ Δ𝐿
✤ 𝐻2: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 ≥ Δ𝑈

✤ D. J. Schuirmann. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average 
bioavailability. Journal of Pharmacokinetics and Biopharmaceutics, 15(6), 1987.



TOST

✤ If we reject both hypothesis,

✤ 𝐻1: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 ≤ Δ𝐿
✤ 𝐻2: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 ≥ Δ𝑈

✤ then we can assert that Δ𝐿 < 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 < Δ𝑈; or that the two treatment 
means are equivalent. 



TOST t-tests

✤ The dual hypothesis can be rewritten as

✤ 𝐻1: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 − Δ𝐿 ≤ 0

✤ 𝐻2: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 − Δ𝑈 ≥ 0

✤ which leads to the t statistics

✤ 𝑡1 =
𝑋𝑛𝑒𝑤−𝑋𝑠𝑡𝑑 −Δ𝐿
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✤ where 𝑋𝑛𝑒𝑤 and 𝑋𝑠𝑡𝑑 are the estimated means of the new and standard treatments, respectively, 

while 𝑛1 and 𝑛2 are the number of observations for new and standard treatments.



TOST t-tests

✤ In some examples in the literature, the t statistics are written as

✤ 𝑡1 =
𝑋𝑛𝑒𝑤−𝑋𝑠𝑡𝑑 −Δ𝐿
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✤ This usually results in a change of sign of 𝑡2, and a change of the “tail” of the calculation 

of probabilities of the associated 𝑡 values. We use the previous convention to be 
consistent with the R library TOSTER to provide an alternative check on our calculations.

✤ [1] A. R. Caldwell. Exploring equivalence testing with the updated toster r package. PsyArXiv, November 2022.



TOST t-tests

✤ 𝑠 is a pooled standard deviation. In the literature, this is commonly given as

✤ 𝑠 =
𝑛1−1 𝑠𝑑𝑛𝑒𝑤

2 + 𝑛2−1 𝑠𝑑𝑠𝑡𝑑
2

𝑛1+𝑛2−2

✤ where 𝑠𝑑𝑛𝑒𝑤
2  and 𝑠𝑑𝑠𝑡𝑑

2  are the squared standard deviations for the new and standard 
treatments, respectively.

✤ However, when computing equivalence tests in ARM for designed experiments, we use 
the pooled standard deviation from the AOV table; this is the square root of the residual 
mean square. That is,

✤ 𝑠 = 𝑅𝑀𝑆



Confidence Interval Method

✤ The two one sided tests imply an equivalent confidence interval test. 

✤ Using the Confidence interval method, we define a (1-2𝛼) confidence 
interval; if this interval is contained within the confidence bounds we reject 
the TOST hypothesis and declare that equivalence is established. 

✤ This corresponds to a 90% CI when each TOST test is at the traditional 95% 
significance.

✤ H. van der Voet, J. N. Perry, B. Amzal, and C. Paoletti. A statistical assessment of differences and equivalences between genetically modified and reference plant 
varieties. BMC Biotechnology, 11(1):15, Feb. 2011.



Selecting Δ

✤ Choosing an appropriate Δ is not a statistical problem.

✤ Instead, the choice of Δ is chosen to be the smallest effect size of interest 
(SESOI). This will usually be chosen based on what researchers consider to 
be an inconsequential difference.

✤ Note that we do not use the term “equal” to describe two means, we use the  
less precise term “equivalent”, which implies a degree of uncertainty in the 
comparison. 



Specifying Δ

✤ In ARM, we allow three options for specifying Δ.

✤ The most generally useful, for most cases, will be the “Percent of standard” 
basis. Suppose we enter 5 (for 5% of standard) in the ARM Limit field, and 

further suppose that the mean for the standard treatment (𝑋𝑠𝑡𝑑) is 50. Then

✤ Δ𝐿 = −𝑋𝑠𝑡𝑑 × Τ5 100 = −2.5

✤ Δ𝑈 = 𝑋𝑠𝑡𝑑 × Τ5 100 = 2.5



Specifying Δ

✤ We also allow Cohen’s 𝑑 to be used to specify the equivalence limit.

✤ Cohen’s 𝑑 is a measure of effect size, or the proportion to an effect to standard deviation, such that

✤ 𝑑 = 𝑋𝑛𝑒𝑤 − 𝑋𝑠𝑡𝑑 /𝑠

✤ where 𝑠 is a pooled standard deviation.

✤ Cohen (whose work was in social sciences) gave a guidelines for effect sizes of small = 0.10, medium = 
0.3 and large = 0.5

✤ When using Cohen’s 𝑑 as a equivalence limit basis, we compute

✤ Δ = 𝑑 × 𝑠



Specifying Δ

✤ Finally, in ARM we allow an absolute value to be entered as the confidence limit. When 
the absolute value basis is selected and 5 entered in the Equivalence limit field. then

✤ Δ𝐿 = −5andΔ𝑈 = 5

✤ This may be easier for researchers to work with. For example, suppose a new 
formulation is $15 per acre cheaper when applied to soybeans. Suppose soybeans market 
at $8 per bushel. 

✤ Then at absolute value of 2 bushels per acre, the new formulation will be equivalent to 
the standard formulation even if mean yield associated with the new formulation is no 

less than 2 bushel per acre lower than the standard formula (Δ𝐿 = −2)



Published Examples

✤ In most cases, the literature on equivalence testing is based on two independent sample t-tests.

✤ These examples typically use pooled standard deviations, and may use different versions of the one-sided t statistic. Where 
possible, we enter the data in ARM as 2 treatment CRD trials, and use the pooled standard deviation from the AOV table. 
Some cases are paired observations and use a paired t-test. We enter these as RCB designs, where pair is the blocking variable.

✤ In some cases, the SESOI is on a absolute scale. This is a reasonable approach if only one assessment is to be tested for 
equivalence. 

✤ When multiple assessments are to be tested for equivalence, there are two caveats that must be consider:

✤ Absolute value SESOI may be invalid for some assessment columns

✤ We have no suitable method for the multiple comparison problem across assessments, so we can’t control Type I error rates 
for multiple equivalence tests. That is, two treatments may appear to be equivalent for a large  number of assessments, but 
some of those equivalences may be spurious.



Possible Outcomes

✤ There are different ways of stating the possible outcome of the 
null hypothesis test (NHST) for difference between means, and 
the TOST for equivalence of two means.

✤ We will borrow from Lakens, who uses confidence intervals to 
illustrate the outcomes.

✤ Four possible outcomes are presented. Diamonds represent 
difference between two means, while bars represent 95% 
confidence intervals; horizontal bands on the bars represent 
90% C.I.

✤ Note that it is possible for two treatments to be statistically 
significant and statistically equivalent.(Case C). This may 
happen if the equivalence limit is large, and the 90% CI of the 
mean difference is small

✤ Adapted from D. Lakens. Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. 
Social Psychological and Personality Science, 8(4):355–362, May 2017.



Lakens 2018

✤ Lakens provides several examples of cases when both 
NHST and TOST may be either significant or non-
significant. However, they only supply data for Example 
1.

✤ This is an example of outcome 1 - not statistically 
different and not equivalent.

✤ We enter the data as a CRD experiment in ARM.

✤ Lakens was the original author of the TOSTER library, 
but additional modifications where made by Caldwell

✤ [1] D. Lakens, A. M. Scheel, and P. M. Isager. Equivalence testing for psychological research: 
A tutorial. Advances in Methods and Practices in Psychological Science, 1(2):259–269, June 
2018.

✤ [2] A. R. Caldwell. Exploring equivalence testing with the updated toster r package. 
PsyArXiv, November 2022.



Lakens 2018

✤ Lakens, et. al, argue that an absolute difference 
between the scores of 6.25% is not meaningful. 

✤ In ARM, we enter this as using the Absolute 
value as the Limit Basis, and enter 0.0625 in the 
Limit field. This examples used the TOST 
method, so we enter that as well. We also enter 
treatment 1 as the alternative, and 2 as the 
standard. Remember, we compute mean 

difference as 𝑋𝑛𝑒𝑤 − 𝑋𝑠𝑡𝑑.

✤ For comparison, we enter the means and 
standard deviations for these data in R and 
invoke the tsum_TOST TOSTER library function.

TOSTER output

ARM output



Lakens 2018

✤ Let’s consider the language reported by the TOST function for the omnibus test of equivalence.

✤ It is common practice to report the single test of the pair of TOST with the largest p-value as result 
of the equivalence test. TOSTER does this with the line:

✤ We require both tests to be significant to reject the pair of null hypothesis and establish 
equivalence.



Lakens 2018

✤ In ARM, we use the language “Inconclusive” when we reject only one of the two null hypothesis.

✤ In this case, we reject the Upper TOST. Remember, this takes the form

✤ 𝐻2: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 − Δ𝑈 ≥ 0 or 𝐻2: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 ≥ Δ𝑈

✤ When we reject this hypothesis, we tend to accept the alternative, that 𝐻2𝑎: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 < Δ𝑈, or that the 
difference between the two means is smaller than our upper bound of equivalence.

✤ This may lead us to conclude that the new treatment is not superior to the standard, within the confidence limits. 

✤ Note that we are not testing the hypothesis 𝐻2: 𝜇𝑛𝑒𝑤 − 𝜇𝑠𝑡𝑑 ≥ 0, which is a one-tail version of the standard 
NHST, which is usually two-tailed. Thus, equivalence testing is not quite the same as testing a one-tailed null 
hypothesis of the traditional form - the equivalence limit plays a role in inference.



Lakens 2018

✤ The TOSTER library does not perform power 
calculations for the achieved power of the 
NHST, but we include this calculation in 
ARM.

✤ This tells use if we have sufficient statistical 
power to detect a mean different of the same 
magnitude as the calculated mean difference.

✤ We can compare with value with the Post 
hoc: Compute achieved power … option 
from the G*Power software. 

G*Power output

ARM output



Lakens 2018

✤ As in this case, most ARM trials will have too few reps to have a meaningful achieved power 
when treatment differences are not significant. It is important to consider that in many cases 
true but small differences cannot be detected.

✤ Part of the art of selecting equivalence limits is deciding upon the value of a true difference 
that is functionally meaningless. We should try to select an equivalence limit to represent a 
difference that even if statistically significant, it would be practically insignificant.



Iolango 2017

✤ Ialongo (2017) provides an overview of the logic of 
equivalence testing, building on the logic of traditional null 
hypothesis testing. 

✤ In Appendix A, Ialongo provided numbers for a paired data 
example. There is no experimental information associated 
with the values; these values are presented as examples for 
calculations only.

✤ Ialongo uses a different version of the t statistic for the 
upper TOST test; reversing the order of the subtractions in 
the numerator. This changes the sign of the t statistic, but 
does not change the magnitude. This does require the use of 
the opposite tail of the t distribution to calculate p values.

✤ C. Ialongo. The logic of equivalence testing and its use in laboratory medicine. 
Biochemia Medica, 27(1):5–13, 2017.



Iolango 2017

✤ We reject both the hypothesis of inferiority 
(TOST Lower) and the hypothesis of 
superiority (TOST Upper), thus we can 
conclude that the two treatments are 
equivalent within a margin of 5% of 
standard.

✤ Note that Ialongo uses the terminology 
such that TOST(Lower) = Hypothesis of 
inferiority and TOST(Upper) = Hypothesis 
of superiority.



Iolango 2017

✤ Ialongo also provides a graph showing the 
confidence interval method. We duplicate this in 
ARM by selecting Confidence Interval as the 
equivalence method.

✤ Since the 90% CI of treatment difference (0.18,2.02) 
is contained in the Equivalence interval (-3.12, 
3.12) we conclude the treatments are equivalent.

✤ We should note that ARM output disagrees with 
Iolango. Iolongo’s CI corresponds to critical t 

values at (1-2𝛼), which produces a 80% two-tailed 

CI. ARM uses (1-𝛼), which produces a 90% two-
tailed CI.



Caldwell 2022

✤ Caldwell contributed to the R TOSTER library, and in 
Caldwell 2022 provided examples of the use in this 
library. 

✤ One data set was from a paired sample sleep study. 
To duplicate this in ARM, we use an RCB design, 
with pair as the blocking variable.

✤ Caldwell specifies an absolute value of 0.5 as the 
equivalence bound.

✤ To match TOST Lower and TOST Lower, we need to 
specify treatment 2 as the standard.

✤ A. R. Caldwell. Exploring equivalence testing with the updated 
TOSTER R package. PsyArXiv, November 2022.



Caldwell 2022

✤ We should note that the equivalence test is 
inconclusive (TOST Lower is not significant), 
and that the NHST Power is 0.950

✤ As we might expect from the NHST Power, we 
do indeed find a statistically significant 
difference between the two means. 

✤ We can produce the scenario where two 
treatments are both statistically significant and 
statistically equivalent if we increase the 
equivalence limit from 0.5 to 2.5. This illustrates 
the importance of a careful choice of 
equivalence bounds.



Richter 2002

✤ Richter provides artificial data for a two sample independent 
means t-test. In ARM, we enter this as a CRD experiment.

✤ Richter also provides instructions for entering the test data in 
an Excel spreadsheet. Importantly, the variables are reversed 
for step 2. This leads to a different sign for the t-test in step 2.

✤ In ARM, we don’t reverse variables, so the signs of the two t-
tests may be different. In either case, we compute 
comparable p-values for the t statistics.

✤ Since both TOST p-values are significant, we declare the two 
treatment groups equivalent within the 0.8 absolute value 
limit.

✤ S. J. Richter and C. Richter. A method for determining equivalence in industrial applications. Quality 
Engineering, 14(3):375–380, 2002.



A more detailed example

✤ The previous examples from the literature focus on randomized control 
trials, which frequently have only two groups - treated and untreated, or 
treated with a standard treatment and treated with a new or alternative 
treatment.

✤ These examples also only focused on a single outcome.

✤ ARM trials are more commonly executed as blocked designs with multiple 
treatments, and usually involve multiple outcomes or assessments. We now 
consider



Shoe Trial

✤ I conducted a shoe trial where I ran in 
different models of running shoes, and I 
recorded as the assessments of interest 
running speed, step length and stride rate.

✤ Use the Fisher LSD test, I find that there 
are significant differences among running 
shoes - most notably, I ran faster (7.92 
mph) in the racing flat Lunaracer2 than in 
the heavier training shoe Ghost (7.64 mph).



Shoe Trial

✤ However, another model of shoe, Green 
Silence, is also a racing flat. Green Silence 
has the same mean separation letter (“a”) as 
Lunarracer2. That tells me the shoes are not 
statistically different.

✤ But are they equal - that is, does it matter if I 
want to run a fast race which pair of shoes I 
wear?

✤ I can’t statistically test that the shoes are 
equal, as we’ve discussed. But I can test if 
the shoes are equivalent.



Shoe Trial

✤ Suppose I run in the Lunarracer a 5K in 20 minutes. A 1% difference in running speed is 12 seconds. A 
5% difference in performance is 60 seconds - a full minute slower. I’m willing to accept two models of 
running shoe as equivalent if the difference between the two models is 1%; 12 seconds is acceptable. A 
5% difference is too great to consider two models equivalent for racing purposes.

✤ So, I’ve determined that the smallest effect size of interest (SESOI), for the purpose of running speeds, to 
be 1% of the standard.

✤ Now I can ask the question -Are the two lightweight models of shoe, Lunarracer2 and Green Silence 
equivalent for my purposes?

✤ From the means table, I also note that a lightweight trainer, Lunarfly, has the same mean separation 
letter (“a”) as Lunaracer2. The Lunarfly might be generally more comfortable and supportive, so I 
interested in determining if Lunaracer2 and Lunarfly are equivalent.



Shoe Trial

✤ Since Lunaracer2 (treatment 6) is common 
to both equivalence tests, we’ll specify that 
model as the standard, and Lunarfly 
(treatment 4) and Green Silence (treatment 
3) as alternatives.

✤ The equivalence method is two one-sided 
tests, while the equivalence basis is 1% of 
standard (Lunaracer2 mean)



Shoe Trial

✤ We’ll focus on the Equivalence Tests for 
running speed only.

✤ We see that we cannot declare that Green 
Silence is equivalent to Lunaracer2, but the 
results for Lunarfly is inconclusive. 

✤ This seems counter intuitive. The absolute 
value of mean difference for Lunarfly is 
larger than the difference for Green 
Silence.



Shoe Trial

✤ Perhaps the CI method is more revealing.

✤ We see that for Lunarfly, the upper bound of the 
mean difference CI is contained within the 
equivalence interval. It is not likely that Lunarfly is 
superior to Lunaracer2, so is equivalent with 
respect to the upper bound.  But it may also be a 
much slower shoe, so equivalence is inconclusive.

✤ In contrast, given the limits of equivalence, Green 
Silence may be a faster shoe, but may also be a 
slower shoe - the equivalence interval is completely 
contained in the mean different CI, so we fail to 
reject both null hypothesis about equivalence.



Shoe Trial

✤ If we refer back to Iolango, we may use the 
language that Lunarfly fails the null (one-
sided) hypothesis of superiority, so we reject 
the null hypothesis of superiority, so we 
might conclude that Lunarfly is not superior 
to Luarracer2. 

✤ Because we reject one and only one of the 
TOST, ARM reports this as “Inconclusive”. 
In contrast, we do not reject either null 
TOST hypothesis for Green Silence, we 
report the result that "Equivalence is not 
established”.



Shoe Trial

✤ We should note that the computed 
statistical power of the NHST for these 
equivalence tests are low (0.169 and 0.077).

✤ If we entered the achieved CV in the 
Power and Efficiency table for this trial, we 
see that we would need 51 replicates to 
detect a mean difference of 1%, while with 
our given number of replicates (6) we 
could detect using the NHST a difference 
of 3%.



Shoe Trial

✤ Given that information, suppose we raise the 
equivalence limit from 1% to 3%.

✤ We then find equivalence between both pairs 
of running shoes.

✤ But is that good practice? Not really. We 
should be careful to specify a meaningful 
SESOI before we perform equivalence tests.

✤ Similarly, we should be careful in planning 
our experiments, so that we can detect 
differences close to our equivalence limits.



A bit more about the Equivalence limit

✤ Choosing the equivalent limit is not a statistical problem. Instead it 
requires, quoting Ialongo “demands the external support provided through 
the so-called equivalence interval to gain a meaning.” 

✤ As we’ve seen, it is possible to find a equivalent interval that supports 
equivalence for nearly any pair of means, if we first examine the data. For 
equivalence tests to be meaningful, they should be determined apriori.



A bit more about the Equivalence limit

✤ We also need to consider that equivalence limits may be determined by, 
again from Ialongo, different applications or different domains. For 
examples, the equivalence limit may be determine by assessment 
measurement; measurements taken with well-calibrate instruments may 
have narrower equivalence intervals than qualitative assessments.

✤ Due to the nature of ARM reports, our current design is limited to applying 
a single equivalence limit to the entire set of assessments included in reports. 
Thus, careful use of equivalence limits may require equivalence tests being 
reported only when a subset of assessments is chosen for a report.



A bit more about the Equivalence limit

✤ One method that may allow equivalence limits to be applied across multiple assessments in a 

single report is to use Cohen’s 𝑑 to define the equivalence limit.

✤ We not discussed the use of Cohen’s 𝑑 in this presentation since there are few examples in the 

literature that explicitly use 𝑑 in defining equivalence limits. In this presentation, we’ve strived 
to show how ARM reproduces equivalence tests as reported in the literature.

✤ Cohen’s 𝑑 standardizes an effect to make the effect relative to variance of the data; 𝑑 is usually 

given by 𝑑 = 𝑋𝑛𝑒𝑤 − 𝑋𝑠𝑡𝑑 /𝑠.

✤ However, thinking about mean and mean differences in terms of Cohen’s 𝑑 is not common in 
agronomic research and may require some adjustments to thinking about experimental results in 
agronomic sciences.



Conclusion

✤ Equivalence tests provide us a method of determining if treatments are 
effectively the same, when differences cannot be detected statistically using 
the traditional null hypothesis testing.

✤ However, we must take care that our experiments have sufficient power to 
detect important differences, and we must take care in determining SESOI.

✤ Determining SESOI is frequently not a statistical problem, but instead must 
take into consideration factors of treatment application and experimental 
outcome.
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