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What do we mean by optimal design?

•       difference between two means 
•       standard deviation 
•       number of replicates 
•       critical value to declare statistical significance
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What do we mean by optimal design?

• F is probability distribution function 

• F(…) becomes smaller as                        becomes more 
negative 

• larger observed t values implies a smaller probability of 
rejecting a true difference
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What do we mean by optimal design?

• increase power by  
• decreasing critical value  
• increasing the effect size (increase   , decrease    ) 
• increasing replicates 

• What’s the easiest to change?

Statistical power
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Eleven strategies for increasing statistical power
• Adding subjects 

• Assigning more subjects to groups which are cheaper to run 

• Choosing a less stringent significance or alpha level 

• Increasing the size of the hypothesized ES 

• Employing as few groups as possible 

• Employing covariates and/or blocking variables 

• Employing a cross-over or repeated measures/within subject design 

• Hypothesizing mean effects rather than interactions 

• Employing measures with are sensitive to change 

• Employing reliable measures 

• Using direct rather than indirect dependent measures

Power Analysis for Experimental Research (2002) Bausell and Li
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Employing covariates or blocking variables

• Employing covariates 

• Analysis of Covariance 

• Employing blocking variables 

• “Post-blocking” “Scattered blocks”

European and Mediterranean Plant Protection Organization  (2012), Design and 
analysis of efficacy evaluation trials. EPPO Bull, 42: 367-381. doi:10.1111/epp.2610

https://doi.org/10.1111/epp.2610


Pause a moment Here’s a picture of a butterfly on a flower



Analysis of Covariance 
Example

• Test of fumigants to control soil 
nematodes in a randomized 
complete block design.


• Response (Second) is nematode 
count after fumigation.


• Covariate (First) is nematode 
count before fumigation.
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• Analysis of Variance 

• Analysis of Covariance

Analysis of Variance/Covariance

Source D F SS MS F P(F)
Treatmen

t
11 313234 28476 2.41628 0.025

Block 3 289426 96476 8.18632 <0.001
Residual 33 388904 11785

Source D F SS MS F P(F)
Treatmen

t
11 313234 28476 5.86725 <0.0001

Block 3 289426 96476 19.87811 <0.0001
First 1 233597 233597 48.13098 <0.0001

Residual 32 155307 4853

yij = μ + τi + bj + eij

yij = μ + τi + bj + βxij + eij



• Analysis of Variance (Second) 

• Analysis of Covariance (Second) 

• Analysis of covariance reduces     by decomposing RCB 
residual error. 

•

Analysis of Variance/Covariance

Source D F SS MS F P(F)
Treatment 11 313234 28476 2.41628 0.025
Block 3 289426 96476 8.18632 <0.001
Residual 33 388904 11785

Source D F SS MS F P(F)
Treatment 11 313234 28476 5.86725 <0.0001
Block 3 289426 96476 19.87811 <0.0001
First 1 233597 233597 48.13098 <0.0001
Residual 32 155307 4853

σ

↓ σ ⟹ ↑ power



Comparing like-to-like

• To compare treatments in an RCB, we can use the 
difference between arithmetic means, since treatments 
are uniformly sampled over replicates. 

• Treatments may not be uniformly sampled over 
covariates, so we adjust treatment difference according 
to differences in covariate and the strength of association 
between covariate and response.

δRCB = ȳi − ȳj

δCOV = ȳi − ȳj − ̂β (x̄i − x̄j)



Comparing like-to-like

• Similarly, in computing standard error, we need to adjust 
for differences in covariate.

s . e . (δRCB) =
2 ̂σ 2

RCB

r

s . e . (δCOV) =
2σ2

COV

r
+ (x̄i − x̄j)2σ2

COV



Mean comparisons

• When the covariates are balanced across treatments, the regression term is 
relatively small and precision is increased. 

• If covariates are assigned to treatments haphazardly, we compare treatments with 
different levels of accuracy. 

• Increased precision in error is offset by decreased precision in covariate 
sampling

2σ2

r
+ (x̄i − x̄j)2σ2

Residual Error Regression Error



Analysis of Covariance

• In some cases, nuisance variables are not captured in 
blocks. 

• Covariates that are measured after treatments are 
applied can help explain what happened. 

• However, we must be aware of the hazards of regression 
on happenstance data …



Hazards of Regression 
on Happenstance 
Data

• Is the response simply linear, or is 
it polynomial or non-linear?


• Are the treatment responses 
uniform?
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Part 2 Here’s another bug on a flower



Treatment dispersion over covariates

• If we can measure      before randomization, we can 
control the differences           . 

• One method for controlling treatment dispersion is to use 
the covariate as a blocking variable.

x̄i − x̄j

xij



Blocking Variables

• In extreme cases, plots may be haphazardly scattered in 
space.

European and Mediterranean Plant Protection Organization  (2012), Design and 
analysis of efficacy evaluation trials. EPPO Bull, 42: 367-381. doi:10.1111/epp.2610

https://doi.org/10.1111/epp.2610


Simple Variable Blocking

1.Rank each plot by covariate. 

2.Divide rank by the number of treatments, rounding up. 

3.This number is now the block. 

4.Randomize treatments within blocks.



Variable Blocks

• Cochran and Cox, blocked by 
First


• This trial would be analyzed as an 
RCB, but Variable Block instead 
of Complete Block

Trial Map (color = First (Rank))

25 24

43

22

42 34

48 16

23

31

40

8

32 12

45

19

10

3

44

18

35 1

30 9

36

5

29

13

27 2

47

26

14

7

37 15

33 11

41

28

39

4

20

17

21

38

46

6

0

10

20

30

40

50

4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
44 44

Trial Map (color = Variable block)

3 2

4

2

4 3

4 2

2

3

4

1

3 1

4

2

1

1

4

2

3 1

3 1

3

1

3

2

3 1

4

3

2

1

4 2

3 1

4

3

4

1

2

2

2

4

4

1

VariableBlock
1
2
3
4

VariableBlock
1 1
2 2
3 3
4 4



Treatment dispersion

Randomizing by variable improves 
sampling over treatments:
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Uniform sampling

Randomizing by variable improves 
sampling over treatments:

• minimize covariate means over 

treatments (Largest Mean 
Difference)
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Uniform sampling

Randomizing by variable improves 
sampling over treatments:

• minimize covariate means over 

treatments (Largest Mean 
Difference) 


• maximize covariate dispersion 
over treatments (Average SD)
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Variable Blocks

• However, blocks are no longer 
spatially contiguous, so blocks 
may not capture other spatially 
varying nuisance variables.

Trial map (color = initial count rank)
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Act 3 Why not both?



Employing covariates and blocking variables

• Can we combine the traditional randomized complete 
blocks with variable blocking? 

• Can we maintain optimal treatment sampling for 
covariate regression, in the constraint of complete 
blocks? 

• Rerandomization



Rerandomization

• …Rubin recounts the following conversation with his advisor Bill 
Cochran:  
• Rubin: What if, in a randomized experiment, the chosen randomized 

allocation exhibited substantial imbalance on a prognostically 
important baseline covariate?  

• Cochran: Why didn’t you block on that variable?  
• Rubin: Well, there were many baseline covariates, and the correct 

blocking wasn’t obvious; and I was lazy at that time.  
• Cochran: This is a question that I once asked Fisher, and his reply was 

unequivocal:  
• Fisher (recreated via Cochran): Of course, if the experiment had not 

been started, I would rerandomize. 

Morgan, K. L., & Rubin, D. B. (2012). Rerandomization to Improve Covariate Balance in Experiments.



Optimal design/randomization

• How do we know when a chosen randomized allocation 
exhibits substantial imbalance? 

• How do we know when a proposed rerandomization 
improves balance?



Wall of math
• Let’s go back to the simple covariate model 

• We represent this in matrix form 

• which simplifies to 

• We sometimes use the normal form 

• to find a solution for 

• We can go on to compute ‘least-square’ means using a linear contrast 

• and the difference between means with a set of linear contrasts

yij = μ + αi + β xij + eij

y = Xβ + e

y11
y12
y13
⋮

yij

=

1 1 0 … 0 x11
1 1 0 … 0 x12
1 1 0 … 0 x13
⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 … 1 xij

[μ τ1 τ2 … τi β]t +

e11
e12
e13
⋮

eij

Xt Xβ = Xy

̂β = (Xt X)−
Xy

y1. = [1 1 0 … 0 x̄]

̂μ
̂τ 1
̂τ 2…
̂τ i
̂β

= L1 ̂β

• We can show that the variance of our estimates is given by 

• Further, we can write the variance for means and the difference between 
means by 

• since 

• it follows 

• If we increase the ‘size’ of 

• we decrease the magnitude of standard error

• When X contains a covariate 

• increasing 

• reduces error by reducing 

• leading to a smaller standard error 

• D-optimality minimizing variance by finding  

• that maximizes the determinant 

• Other criteria exist. For example, a measure of average variance (and A-
optimality) is given by 

•

ȳ1. − ȳ2. = ([1 1 0 … 0 x̄] − [1 0 1 … 0 x̄])

̂μ
̂τ 1
̂τ 2…
̂τ i
̂β

= (L1 − L2) ̂β

Va r ( ̂β ) = (Xt X)−
σ 2

Va r ( ȳ1) = L1 (Xt X)−
Lt

1σ 2

Va r ( ȳ1 − ȳ2) = (L1 − L2)(Xt X)−
(L1 − L2)tσ 2

s . e . ( ȳ1) = L1 (XtX)− Lt
1σ2 =

σ2

n

s . e . ( ȳ1 − ȳ2) = (L1 − L2)(XtX)−(L1 − L2)tσ2 =
2σ2

n

XtX =

n 0 0 … 0
0 n 0 … 0
0 0 n … 0
⋮ ⋮ ⋮ ⋮
0 0 0 … n

(XtX)− =

1/n 0 0 … 0
0 1/n 0 … 0
0 0 1/n … 0
⋮ ⋮ ⋮ ⋮
0 0 0 … 1/n

Xt X

s . e . ( ȳ1) =
σ 2

n

s . e . ( ȳ1 − ȳ2) =
2σ 2

n

s . e . ( ȳ1 − ȳ2) =
2σ 2

r
+ (x̄i − x̄j)2σ 2

X =

1 1 0 … 0 x11
1 1 0 … 0 x12
1 1 0 … 0 x13
⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 … 1 xij

Xt X

(x̄i − x̄j)2

X

Xt X

t r a c e (Xt X)



TL;DR

• D-optimal designs improve balance and minimize : 

• by maximizing the determinant of the information matrix : 

• where    is the design matrix for a linear model

s . e . (ȳ1 − ȳ2) =
2σ2

r
+ (x̄i − x̄j)2σ2

D = XtX

y = Xβ + e

X



What do D-optimal randomizations look like?

• Randomize the Cochran data set based on First count. 

• 2000 randomizations: 

• Variable Blocking (“scattered”) 

• Randomized Complete Block 

• Compute D-optimality for each randomization.



What do D-optimal randomizations look like?

• Focus on two models: 

• Regression only 

• RCB + Covariate (ANCOVA) 

• We can ignore RCB or Variable Block only models; they will all 
have the same optimality.

yij = μ + τi + βxij + eij

yij = μ + τi + bj + βxij + eij

yij = μ + τi + bj + eij



Optimality for 
Regression

D-optimal designs tend to minimize 
the differences of covariate means 
over treatments


These differences are smaller when 
treatments are blocked by 
covariate
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Optimality for 
Regression

D-optimal designs also tend to 
maximize the dispersion of 
covariates over treatments.


These differences are greater when 
treatments are blocked by 
covariate
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Optimality for 
ANCOVA

The additional information from 
blocks makes RCB designs more 
optimal than variable block designs

• Variable blocks allow us to 

recover information about the 
covariate only, and don’t allow for 
other spatial variation
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Treatment means and 
dispersions

Selecting between RCB or variable 
blocking requires a decision:


• Will measurable spatially-varying 
covariates have a greater impact 
on experimental outcome than 
unmeasurable variables?
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Employing covariates and blocking variables

• Variable blocking generally produces more optimal 
designs, with respect to the analysis treatment response 
to covariate. 

• Some RCB variable blocked designs can have treatment  
dispersions comparable to variable blocking. 

• How can we find an optimal variable blocked design 
without selecting from an unknown number of possible 
randomizations?



Two-factor blocking

• Latin square blocks in two dimensions to eliminate two 
sources of nuisance variability 

• Youden squares or partial Latin squares are complete 
blocks in one dimension and incomplete blocks in another 
dimension 

• If a treatment is applied to the plot with the lowest ranked covariate 
in one replicate, it will not be applied to the lowest ranked plot in any 
other replicate 

• Will blocking with complete blocks and with variable blocks 
improve optimality, w.r.t covariate regression?



Variable Block Youden 
Square

No treatment is assigned to plots of 
the same covariate rank.

• Treatment 1 assigned to plots with 

ranks 5,7,9,10

• Treatment 12 assigned to plots 

with ranks 1,3,9,12
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Variable Block Youden 
Square

Using variables as a second 
blocking criteria improves upon 
RCB, w.r.t covariate regression,

but does not approach the 
optimality of unconstrained 
variable blocking.


Randomization Map (color = Column)
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Variable Block Youden 
Square

Variable blocking in columns 
prevents treatments from being 
applied to plots of the same 
covariate rank, but does not 
disperse over plots of similar 
covariate rank.

• Treatment 1 assigned to plots with 

ranks 5,7,9,10
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Variable Block Youden 
Square

This design has the advantage of 
simplicity and relationship to other 
forms of row-column blocking.
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Adaptive designs

• A static design applies the same randomization criteria 
for treatments across all phases of an experiment. 

• An adaptive design alters treatment randomization based 
on intermediate measures. 

• Can we randomize blocks in phases to maximum 
optimality at each phase?



An adaptive randomization

1. Randomize first replicate as usual. 

2. Rank treatments in first block by covariate. Rank plots in second block by 
covariate. Assign treatments with the highest rank in block one to the plots with the 
lowest rank in block two. 

3. Rank treatments in the first two blocks by covariate dispersion (standard deviation). 
Rank plots in the third block by deviation from the covariate mean in the first two 
blocks. Assign treatments with the smallest dispersion to the plots with the largest 
deviation. 

4. Rank treatments in the first three blocks by the deviation of the treatment covariate 
mean from the covariate mean grand mean. Rank plots in the fourth block by 
deviation from the covariate mean in the first three blocks. Assign treatments with 
the smallest deviation to the plots with the largest deviation. 

5. Alternate between 3 and 4 until all replicates have been assigned.



An adaptive randomization
1. Randomize first replicate as usual 

2. Rank treatments in first block by covariate. Rank plots in second block by 
covariate. Assign treatments with the highest rank in block one to the plots 
with the lowest rank in block two. 

• This step minimizes the differences among treatment 
covariate means. 

3. Rank treatments in the first two blocks by covariate dispersion (standard 
deviation). Rank plots in the third block by deviation from the covariate mean 
in the first two blocks. Assign treatments with the smallest dispersion to the 
plots with the largest deviation. 

•Maximize standard deviation of covariates over 
treatment means 

4. Rank treatments in the first three blocks by the deviation of the treatment 
covariate mean from the covariate mean grand mean. Rank plots in the fourth 
block by deviation from the covariate mean in the first three blocks. Assign 
treatments with the smallest deviation to the plots with the largest deviation. 

•Minimize differences among treatment covariate means 

5. Alternate between 3 and 4 until all replicates have been assigned.
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Optimality of an 
adaptive 
randomization

For this example, the proposed 
adaptive randomization finds a 
optimal design.
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Optimality of an 
adaptive 
randomization

This is not a global optimum, so for 
some experimental data there can 
be more optimal designs.
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George A. Milliken, Dallas E. Johnson (2001) Analysis of Messy Data, Volume III: Analysis of Covariance. Table 10.2



Conclusions

• Analysis of Covariance and Variable Blocking provide 
design and analysis models to control for measurable 
nuisance variables. 

• A combination of traditional (RCB) blocking and Variable 
Blocking can be expected to improve upon RCB designs 
with respect to analysis of covariance, but not upon 
Variable Blocking. 

• Adaptive Randomization can find RCB randomizations 
that optimize the Analysis of Covariance.



Appendix

• How important is decreasing    ? 

• Can’t we just increase    ? 

• It depends…

δ

σ



What can we 
improve?

Winter Wheat, National Yield Trend
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What can we 
improve?

Winter Wheat, National Yield Trend


Corn, National Yield Trend
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What can we 
improve?

Winter Wheat, National Yield Trend


Corn, National Yield Trend


Soybean, National Yield Trend
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Soybean Yield Trend (US)

δ1951−1975 = 2.34 bu/acre
δ1994−2018 = 2.02 bu/acre

δ1951−1975 = 0.33 bu/acre
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